Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents a first-principles model for the recovery of dissolved gases from liquids using a sidestream hollow-fiber membrane module. The model avoids the use of new empirical coefficients, thus providing a parametric understanding of the process behavior for future design and optimization of membrane modules. This type of first-principles model could be particularly useful when gas recovery is beneficial to biological or chemical reactions of interest, such as the acetogenesis reactions in two-stage anaerobic digesters. The steady-state behavior of the model was validated against both new experimental data for the recovery of H2, CH4 and H2–CH4 mixtures from pure water, as well as existing published data. The modeled gas recovery predictions agreed with experimental data to an absolute average error of 13%, and an average R value of 0.98. Parametric analysis of mixed-gas recovery suggests possible key transition points in the composition of the recovered gases. For example, at 40 °C, increasing trans-membrane pressure while keeping hydraulic residence time (HRT) under 0.5 s will result in an increase in the ratio of H2 to CH4 recovered. Otherwise, increasing trans-membrane pressure will instead decrease the ratio of H2 to CH4 recovered. The model has potential to be extended to transient analysis, but has yet to be validated with transient experimental data. This model was successfully implemented in both Python and MATLAB, and provides valuable insights for future net-energy optimization for anaerobic digestion systems with in-situ gas recovery.more » « less
-
ASEE (Ed.)The purpose of this study was to measure the neurocognitive effects of think aloud when engineering students were designing. Thinking aloud is a commonly applied protocol in engineering design education research. The process involves students verbalizing what they are thinking as they perform a task. Students are asked to say what comes into their mind. This often includes what they are looking at, thinking, doing, and feeling. It provides insight into the student’s mental state and their cognitive processes when developing design ideas. Think aloud provides a richer understanding about how, what and why students’ design compared to solely evaluating their final product or performance. The results show that Ericsson and Simon's claim that there is no interference due to think-aloud is not supported by this study and more research is required to untangle the effect of think-aloud.more » « less
-
Abstract We expand the assessment study of modeling capabilities in the prediction of foF2 and hmF2 for the ionospheric climatology (Tsagouri et al., 2018,https://doi.org/10.1029/2018sw002035) by using updated empirical (IRI and MIT Empirical model) and physics‐based models (CTIPe, WACCM‐X, and TIE‐GCM) as well as the additional observations in the southern hemisphere. Monthly medians of foF2 and hmF2 are considered to evaluate the model performance for the entire year of 2012. For quantitative evaluation, we employ several metrics including the correlation coefficient (R), coefficient of determination (R2), root‐mean square error (RMSE), mean error (ME), and mean relative error (MRE). The linear regression analysis shows that the empirical models perform much better than physics‐based models for foF2 but to a lesser degree for hmF2. There are negligible hemispheric differences in the predictions from empirical models. All the physics‐based models show relatively good correlations with the observations for foF2 in the northern hemisphere compared to the southern hemisphere, but the hemispheric differences are small for hmF2. The results of the study indicate that recent versions of empirical models tend to perform better than old versions of the models, but this is not always true for physics‐based models.more » « less
-
Abstract Intrinsically disordered proteins rich in cationic amino acid groups can undergo Liquid-Liquid Phase Separation (LLPS) in the presence of charge-balancing anionic counterparts. Arginine and Lysine are the two most prevalent cationic amino acids in proteins that undergo LLPS, with arginine-rich proteins observed to undergo LLPS more readily than lysine-rich proteins, a feature commonly attributed to arginine’s ability to form stronger cation-π interactions with aromatic groups. Here, we show that arginine’s ability to promote LLPS is independent of the presence of aromatic partners, and that arginine-rich peptides, but not lysine-rich peptides, display re-entrant phase behavior at high salt concentrations. We further demonstrate that the hydrophobicity of arginine is the determining factor giving rise to the reentrant phase behavior and tunable viscoelastic properties of the dense LLPS phase. Controlling arginine-induced reentrant LLPS behavior using temperature and salt concentration opens avenues for the bioengineering of stress-triggered biological phenomena and drug delivery systems.more » « less
-
Data report: moisture and density analysis and ultrasonic velocity, Hole U1513E, IODP Expedition 369null (Ed.)In this data report, we present postcruise petrophysical measurement results for Hole U1513E. During International Ocean Discovery Program (IODP) Expedition 369, five holes were drilled at Site U1513 on the Naturaliste Plateau offshore southwest Australia. The last and deepest hole, U1513E, recovered a volcanic sequence (Lithostratigraphic Unit VI) consisting of basalt flows, dolerite dikes, and volcaniclastic beds. Because of time constraints, moisture and density (MAD) measurements were not possible on board for Hole U1513E. To obtain bulk (wet), dry, and grain density and porosity data, we performed the MAD analysis on 25 core samples collected from Hole U1513E after the expedition. Among these samples, five were selected to measure ultrasonic velocity and dynamic Poisson’s ratio. Six additional samples from Hole U1513D were analyzed to compare with shipboard data to validate the postcruise measurements. The results are compatible with shipboard data in individual lithologic units. Samples of relatively fresh rocks show bulk and dry density values near 2.5 g/cm3 and porosity near 10%, whereas altered basalts and volcaniclastics exhibit lower values of bulk and dry density and higher values of porosity. Grain density varies between 2.6 and 3.3 g/cm3. S-wave velocity ranges from 934 to 3135 m/s, which accompanies variable dynamic Poisson’s ratio between 0.1 and 0.35.more » « less
-
ABSTRACT Spatially resolved images of debris discs are necessary to determine disc morphological properties and the scattering phase function (SPF) thatantifies the brightness of scattered light as a function of phase angle. Current high-contrast imaging instruments have successfully resolved several dozens of debris discs around other stars, but few studies have investigated trends in the scattered-light, resolved population of debris discs in a uniform and consistent manner. We have combined Karhunen-Loeve Image Projection (KLIP) with radiative-transfer disc forward modelling in order to obtain the highest-quality image reductions and constrain disc morphological properties of eight debris discs imaged by the Gemini Planet Imager at H-band with a consistent and uniformly applied approach. In describing the scattering properties of our models, we assume a common SPF informed from solar system dust scattering measurements and apply it to all systems. We identify a diverse range of dust density properties among the sample, including critical radius, radial width, and vertical width. We also identify radially narrow and vertically extended discs that may have resulted from substellar companion perturbations, along with a tentative positive trend in disc eccentricity with relative disc width. We also find that using a common SPF can achieve reasonable model fits for discs that are axisymmetric and asymmetric when fitting models to each side of the disc independently, suggesting that scattering behaviour from debris discs may be similar to Solar system dust.more » « less
-
Abstract The Gravitational-Wave Transient Catalog (GWTC) is a collection of short-duration (transient) gravitational-wave signals identified by the LIGO–Virgo–KAGRA Collaboration in gravitational-wave data produced by the eponymous detectors. The catalog provides information about the identified candidates, such as the arrival time and amplitude of the signal and properties of the signal’s source as inferred from the observational data. GWTC is the data release of this dataset, and version 4.0 extends the catalog to include observations made during the first part of the fourth LIGO–Virgo–KAGRA observing run up until 2024 January 31. This Letter marks an introduction to a collection of articles related to this version of the catalog, GWTC-4.0. The collection of articles accompanying the catalog provides documentation of the methods used to analyze the data, summaries of the catalog of events, observational measurements drawn from the population, and detailed discussions of selected candidates.more » « lessFree, publicly-accessible full text available December 9, 2026
-
Abstract We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO–Virgo–KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, nonnegligible spin–orbit misalignment, and unequal mass ratios between their constituent black holes. These properties are characteristic of binaries in which the more massive object was itself formed from a previous binary black hole merger and suggest that the sources of GW241011 and GW241110 may have formed in dense stellar environments in which repeated mergers can take place. As the third-loudest gravitational-wave event published to date, with a median network signal-to-noise ratio of 36.0, GW241011 furthermore yields stringent constraints on the Kerr nature of black holes, the multipolar structure of gravitational-wave generation, and the existence of ultralight bosons within the mass range 10−13–10−12eV.more » « lessFree, publicly-accessible full text available October 28, 2026
An official website of the United States government

Full Text Available